Order-disorder character of PbTiO_{3}

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 J. Phys.: Condens. Matter 20015224
(http://iopscience.iop.org/0953-8984/20/1/015224)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 29/05/2010 at 07:20

Please note that terms and conditions apply.

Order-disorder character of PbTiO_{3}

Young-Han Shin ${ }^{1}$, Jong-Yeog Son ${ }^{1}$, Byeong-Joo Lee ${ }^{1}$, Ilya Grinberg ${ }^{2}$ and Andrew M Rappe ${ }^{2}$
${ }^{1}$ Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
${ }^{2}$ Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
E-mail: sonjyson@ postech.ac.kr

Received 6 July 2007, in final form 15 November 2007
Published 12 December 2007
Online at stacks.iop.org/JPhysCM/20/015224

Abstract

We report the displacive and order-disorder characters of PbTiO_{3} analyzed using a classical atomic model which was developed under the inverse relation between the bond length and the bond valence. The ferroelectric phase changes to the paraelectric phase around 700 K , and the histograms of $\mathrm{Ti}-\mathrm{O}$ and $\mathrm{Pb}-\mathrm{O}$ bond lengths have three peaks which become a single peak above the phase transition temperature. The order-disorder character of this material was clearly shown by analyzing the ion displacement magnitudes.

(Some figures in this article are in colour only in the electronic version)

Ferroelectricity in perovskites has been widely investigated due to applications like nonvolatile random access memory [1-3]. Comes et al used x-ray scattering to study the structural disorder of BaTiO_{3} and KNbO_{3} [4]. Starting from the work of Comes et al the n-site model was developed and studied with first-principles calculations [5, 6]. PbTiO_{3} has a simple structural phase transition compared to the other perovskites such as BaTiO_{3}. While PbTiO_{3} has been believed to be a typical displacive ferroelectric, some experimental evidence reveals an order-disorder behavior in this material [7-9]. The evidence suggests that the Pb ions are disordered over six sites along the cubic principal axes. Unfortunately, despite the evidence that supports the notion of an order-disorder behavior in PbTiO_{3}, there is difficulty in interpreting experimental results.

First-principles calculations have been used for studying and understanding ferroelectrics. Differences in the ferroelectric phase transition (including the effect of tetragonal strain) between BaTiO_{3} and PbTiO_{3} were studied with the first-principles calculations [10], and a few atomic potential models based on the density functional theory have been developed [11-15]. In the case of BaTiO_{3}, the order-disorder and displacive characters during the phase transitions were examined with an effective Hamiltonian approach specified by the first-principles pseudopotential calculations [16, 17]. In order to study the displacive and order-disorder characters of PbTiO_{3}, we use a classical model potential based on the inverse relation between the bond valence and the bond length. The
parameters of this potential model were fit to the reference structures obtained from first-principles calculations developed for ionic systems [13].

The total interatomic potential of the bond-valence model is given by:

$$
\begin{equation*}
E_{\mathrm{bv}}=E_{\mathrm{c}}+E_{\mathrm{r}}+E_{\mathrm{b}}+E_{\mathrm{a}} \tag{1}
\end{equation*}
$$

where E_{c} is a Coulombic potential, E_{r} is a short-range repulsive potential, E_{b} is a potential for the bond-valence relation, and E_{a} is an angle potential which is required for correcting the octahedral tilt. The form of the Coulombic potential E_{c} is

$$
\begin{equation*}
E_{\mathrm{c}}=\frac{1}{4 \pi \epsilon_{0}} \sum_{\beta} \sum_{\beta^{\prime}}\left(\frac{q_{\beta} q_{\beta}^{\prime}}{r_{\beta \beta^{\prime}}}\right) \tag{2}
\end{equation*}
$$

where ϵ_{0} is the electrical permittivity of space, q_{β} is the fitting parameter which is close to the Mulliken charge of the atom of the type β, and $r_{\beta \beta^{\prime}}$ is the bond length between two atoms of types β and β^{\prime}. The form of the pairwise repulsive potential E_{r} is

$$
\begin{equation*}
E_{\mathrm{r}}=8 \epsilon \sum_{\beta} \sum_{\beta^{\prime}}\left(\frac{B_{\beta \beta^{\prime}}}{r_{\beta \beta^{\prime}}}\right)^{12} \tag{3}
\end{equation*}
$$

where ϵ is the energy unit of 1 eV , and $B_{\beta \beta^{\prime}}$ is the fitting parameter. Brown et al produced the empirical inverse formula between the bond length and the bond valence as follows:

$$
\begin{equation*}
V_{\beta \beta^{\prime}}=\left(\frac{r_{\beta \beta^{\prime}}^{0}}{r_{\beta \beta^{\prime}}}\right)^{C_{\beta \beta^{\prime}}}, \tag{4}
\end{equation*}
$$

where $V_{\beta \beta^{\prime}}$ is the bond valence and $r_{\beta \beta^{\prime}}^{0}$ and $C_{\beta \beta^{\prime}}$ are empirical parameters which are specific to the atom types to be bonded. For example, empirical $r_{\beta \beta^{\prime}}^{0}$ and $C_{\beta \beta^{\prime}}$ parameters are $1.806 \AA$ and 5.2 for $\mathrm{Ti}-\mathrm{O}$ and $2.044 \AA$ and 5.5 for $\mathrm{Pb}-\mathrm{O}$ [18]. Since the theoretical lattice constants ($a=3.87 \AA$ and $c=4.05 \AA$) from the local density approximation are smaller than the experimental values $(~ a=3.9 \AA$ and $c=4.15 \AA$), we corrected the $r_{\beta \beta^{\prime}}^{0}$ parameter using the fact that the sum of bond valences should be the same as the atomic valence. The bond-valence potential E_{b}

$$
\begin{equation*}
E_{\mathrm{b}}=\sum_{\beta} S_{\beta}\left(\sum_{\beta^{\prime}} V_{\beta \beta^{\prime}}-V_{\beta}\right)^{2} \tag{5}
\end{equation*}
$$

favors each atom having bonding equal to its atomic valences V_{β} and provides a constraint, where V_{β} is the atomic valence and S_{β} is the fitting parameter. If all the ions in an ionic system have positions that give the preferred atomic valence, the potential E_{b} will be minimized. Thus, equation (5) keeps the sum of the bond strengths for each atom close to its desired atomic valence. The angle potential E_{a} is defined as

$$
\begin{equation*}
E_{\mathrm{a}}=k \sum_{i=1}^{N_{\text {oct }}}\left(\theta_{i, x}^{2}+\theta_{i, y}^{2}+\theta_{i, z}^{2}\right) \tag{6}
\end{equation*}
$$

where k is the angle potential parameter, $N_{\text {oct }}$ is the number of oxygen octahedra, and $\theta_{i, k}$ is the angle of the opposite oxygen atoms relative to the reference axis along the k direction. All potential parameters used in this study are listed in table 1.

Using this model potential for PbTiO_{3}, we performed molecular dynamics simulations at constant temperatures below and above the experimental phase transition temperature T_{c} (765 K), controlling temperatures with the Nosé-Hoover thermostat as implemented in MOLDY ${ }^{3}$. In these simulations, the lattice constants were fixed to the experimental values while the z axis was set to the polar axis. The instantaneous local polarization $\mathbf{P}_{\mathbf{u}}(t)$ is defined as:

$$
\begin{align*}
\mathbf{P}_{\mathbf{u}}(t) & =\frac{1}{V_{\mathbf{u}}}\left(\frac{1}{8} \mathbf{Z}_{\mathrm{Pb}}^{*} \sum_{i=1}^{8} \mathbf{r}_{\mathrm{Pb}, i}(t)+\mathbf{Z}_{\mathrm{T} \mathbf{i}}^{*} \mathbf{r}_{\mathrm{Ti}}(t)\right. \\
& \left.+\frac{1}{2} \sum_{i=1}^{6} \mathbf{Z}_{\mathrm{O}, i}^{*} \mathbf{r}_{\mathrm{O}, i}(t)\right) \tag{7}
\end{align*}
$$

where V_{u} is the volume of a unit cell, $\mathbf{Z}_{\mathrm{Pb}}^{*}, \mathbf{Z}_{\mathrm{Ti}}^{*}$, and $\mathbf{Z}_{\mathrm{O}, i}^{*}$ are the Born effective charge tensors, and $\mathbf{r}_{\mathrm{Pb}, i}, \mathbf{r}_{\mathrm{Ti}}$, and $\mathbf{r}_{\mathrm{O}, i}$ are atomic positions of Pb, Ti, and O atoms in a unit cell at time t [19-21]. The polarization \mathbf{P} was obtained from the time average of the sum of $\mathbf{P}_{\mathbf{u}}(t)$ in a supercell divided by the number of unit cells. We also increased the number of unit cells in a supercell to remove the effect of periodic boundary conditions especially around the phase transition temperature. The profile of the polarization \mathbf{P} at various temperatures between 300 and 800 K is shown in figure 1. At 300 K , the z component of $\mathbf{P}\left(P_{z}\right)$ is close to the experimental value ($0.8 \mathrm{C} \mathrm{m}^{-2}$), and the x and y components

[^0]Table 1. Optimized potential parameters of the bond-valence model potential function which were used in this study. The angle potential parameter k is $1.43 \mathrm{meV} /\left({ }^{\circ}\right)^{2}$.

							$B_{\beta \beta^{\prime}}(\AA)$		
β	V_{β}	$r_{\beta \mathrm{O}}^{0}(\AA)$	$C_{\beta \mathrm{O}}$	$q_{\beta}(e)$	$S_{\beta}(\mathrm{eV})$	Pb	Ti	O	
Pb	2	1.969	5.5	1.419	0.013		-	2.224	1.686
Ti	4	1.804	5.2	1.036	0.223		2.224	-	1.201
O	2	-	-	-0.818	0.702		1.686	1.201	1.857

(P_{x} and P_{y}) are nearly zero with small fluctuation (figure 1(a)). As the temperature increases, the magnitude of the polarization \mathbf{P} along the polar axis gradually decreases (figures $1(\mathrm{~b})$ and (c)). At 700 K , the sign of P_{z} changes randomly with large fluctuation (figure $1(\mathrm{~d})$). At 800 K , the P_{z} component cannot be distinguished from the P_{x} and P_{y} components (figure 1(e)). Therefore, the computational ferroelectric phase transition temperature of PbTiO_{3} corresponds to $\sim 700 \mathrm{~K}$ (figure 1(f)). The improved phase transition temperature of PbTiO_{3} compared to reference [13] results from the additional reference structures with different c / a ratios.

In order to examine the displacive and order-disorder characters of PbTiO_{3}, we analyzed the distances between one of the metal ions and its neighboring oxygen ions in the two extreme cases-temperatures below and above the computational phase transition temperature. Schematic diagrams of $\mathrm{Pb}-\mathrm{O}$ and $\mathrm{Ti}-\mathrm{O}$ bond lengths are shown in figure 2.

Below the phase transition temperature, three clearly separated peaks are observed for both $\mathrm{Ti}-\mathrm{O}$ and $\mathrm{Pb}-\mathrm{O}$ bonds. In figure 3(a), the histograms of $\mathrm{Ti}-\mathrm{O}$ and $\mathrm{Pb}-\mathrm{O}$ bond lengths are fitted to Gaussian functions. There are six nearest-neighbor oxygen ions for each Ti ion in a high-symmetry cubic structure. In a tetragonal structure, however, these oxygen ions do not have the same distances from the Ti ion. One of the two Ti-O bonds along the polar axis is the longest, another is the shortest, and the other four $\mathrm{Ti}-\mathrm{O}$ bonds are in the middle. Therefore, the histogram of Ti-O bond lengths shows three peaks: a peak centered at $1.8 \AA$ with the area of S, a peak centered at $2.4 \AA$ with the area of S, and a peak centered at $2.0 \AA$ with the area of $4 S$ (figure $3(\mathrm{a})$). Each Pb ion has twelve nearestneighbor oxygen ions in a high-symmetry cubic structure. In a tetragonal structure, four of nearest-neighbor oxygen ions on a plane perpendicular to the polar axis form the shortest bonds to Pb , another four form intermediate bonds, and the other four form the longest bonds. Therefore, the histogram of $\mathrm{Pb}-\mathrm{O}$ bond lengths will show three peaks with the same areas of $4 S$: a peak centered at $2.5 \AA$, a peak centered at $3.3 \AA$, and a peak centered at $2.8 \AA$.

As the temperature increases, each peak becomes broader and broader until they become indistinguishable from one another (figure 3(d)). However, the shape of the merged peaks at the high temperature is not always symmetric. This asymmetry means the net displacement of each ion is not exactly zero, even above the phase transition temperature. In order to explain the symmetry of peaks, the analytic expression of the bond lengths might be helpful. The analytic expression

Figure 1. Temperature dependence of polarization of PbTiO_{3}. (a)-(e) Polarization profiles from molecular dynamics simulations during 100 ps below and above the phase transition temperature. (f) The phase transition behavior of PbTiO_{3}. The standard deviation of polarization is denoted with the vertical error bar at each point.
of the three bond lengths of $\mathrm{Pb}-\mathrm{O}$ is

$$
\begin{gather*}
f_{1}=\sqrt{\left(\frac{c}{2}-d_{\mathrm{Pb}}\right)^{2}+\left(\frac{a}{2}\right)^{2}} \tag{8}\\
f_{2}=\sqrt{\frac{a^{2}}{2}+d_{\mathrm{Pb}}^{2}} \tag{9}\\
f_{3}=\sqrt{\left(\frac{c}{2}+d_{\mathrm{Pb}}\right)^{2}+\left(\frac{a}{2}\right)^{2}}, \tag{10}
\end{gather*}
$$

where d_{Pb} is the displacement of the Pb ion, and the analytic expression of the three bond lengths of $\mathrm{Ti}-\mathrm{O}$ is

$$
\begin{gather*}
g_{1}=\frac{c}{2}-d_{\mathrm{Ti}} \tag{11}\\
g_{2}=\sqrt{\left(\frac{a}{2}\right)^{2}+d_{\mathrm{Ti}}^{2}} \tag{12}\\
g_{3}=\frac{c}{2}+d_{\mathrm{Ti}} \tag{13}
\end{gather*}
$$

where d_{Ti} is the displacement of the Ti ion. Since the Pb and Ti displacements are 0.4 and $0.3 \AA$ at 100 K , the estimated distances among the centers of the three peaks for the $\mathrm{Pb}-\mathrm{O}$ bonds are 0.14 and $0.30 \AA$, and the estimated distances among the centers of the three peaks for the Ti-O bonds are 0.32 and $0.48 \AA$. These analytic results show good agreement with the peaks in figure 3(a). At 800 K , the Pb and Ti displacements are about 0.1 and $0.2 \AA$, respectively. From the analytic expression of the $\mathrm{Ti}-\mathrm{O}$ and $\mathrm{Pb}-\mathrm{O}$ bonds, the distances among the $\mathrm{Pb}-\mathrm{O}$ peaks are $0.07 \AA$, and the distances among the Ti-O peaks are 0.21 and $0.19 \AA$ (figures 3(e) and (f)). The symmetric peak of $\mathrm{Pb}-\mathrm{O}$ at 800 K can be explained using this analytic expressio of the bond length.

When the histogram of the Ti displacement below T_{c} is compared with the histogram of the Ti displacement above T_{c}, the order-disorder character of PbTiO_{3} becomes clear (figure 4). The largest one among x, y, and z components of the displacement vectors of Ti and Pb ions is chosen to make these histograms. Below T_{c}, the distribution of each ion has a single peak with the same sign of displacements as shown in

Figure 2. Diagrams of (a) $\mathrm{Pb}-\mathrm{O}$ and (b) Ti-O bonds in a unit cell of PbTiO_{3}. Black, white, and gray circles denote Ti, Pb, and O , respectively. Arrows demonstrate the displacements of Pb and Ti ions.
figure 4 with black (red in the electronic version) solid circles. If PbTiO_{3} had only the displacive character, the displacement distribution above T_{c} should be a single peak. Black squares (blue solid circles in the electronic version) in figure 4 show that the distribution of the Ti displacement has symmetric double peaks, which confirms that there is an order-disorder characteristic for PbTiO_{3} in the paraelectric phase. The same behavior was shown for the Pb displacement in figure 4.

In conclusion, we studied the displacive and orderdisorder characters of PbTiO_{3} with the classical atomic model which has been developed under the inverse relation between the bond length and the bond valence. From the additional reference structures with different c / a ratios, we obtained the improved phase transition temperature of 700 K and the spontaneous polarization of $0.9 \mathrm{C} \mathrm{m}^{-2}$ at 300 K which is close to the experimental value.

To examine the displacive and order-disorder characters of PbTiO_{3}, we analyzed the histograms of $\mathrm{Ti}-\mathrm{O}$ and $\mathrm{Pb}-$ O bond lengths which have three clearly separated peaks as

Figure 4. Histograms of Ti and Pb displacements of PbTiO_{3}.

Gaussian forms below the phase transition temperature. Also, the displacement distributions of Ti and Pb have a single peak below the phase transition temperature, indicating the displacive character of PbTiO_{3}. Such a displacive character can be found from the decrease of the polarization as the temperature increases. In the paraelectric phase, however, the displacement distributions of Ti and Pb show symmetric double peaks, which reveals an order-disorder characteristic of PbTiO_{3}.

Acknowledgments

This work was supported by the Brain Korea 21 Project in 2006, by the US Office of Naval Research, under grants N00014-00-1-0372 and N00014-01-1-0365, and by the US NSF MRSEC Program, Grant DMR05-20020. Computational support was provided by a Challenge Grant from the HPCMO of the US Department of Defense.

Figure 3. Smeared histograms of the Ti and Pb displacement at (a) 100 K and (d) 800 K . The centers of peaks can be analytically shown using the $\mathrm{Pb}-\mathrm{O}$ and $\mathrm{Ti}-\mathrm{O}$ bond lengths as functions of Ti and Pb displacements, respectively at $100 \mathrm{~K}(\mathrm{~b})$ and (c) and 800 K (e) and (f).

References

[1] Lines M E and Glass A M 1977 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Clarendon)
[2] Miller R C and Weinreich G 1960 Phys. Rev. 1171460
[3] Tybell T, Paruch P, Giamarchi T and Triscone J M 2002 Phys. Rev. Lett. 89097601
[4] Comes R, Lambert M and Guinier A 1968 Solid State Commun. 6715
[5] Dougherty T P, Wiederrecht G P, Nelson K A, Garrett M H, Jensen H P and Warde C 1992 Science 258770
[6] Krakauer H, Yu R, Wang C, Rabe K M and Waghmare U V 1999 J. Phys.: Condens. Matter 113779
[7] Fontana M D, Idrissi H, Kugel G E and Wojcik K 1991 J. Phys.: Condens. Matter 38695
[8] Nelmes R J, Piltz R O, Kuhs W F, Tun Z and Restori R 1990 Ferroelectrics 108165
[9] Kiat J, Uesu Y, Dkhil B, Matsuda M, Malibert C and Calvarin G 2002 Phys. Rev. B 65064106
[10] Cohen R E 1992 Nature 358136
[11] Sepliarsky M, Stachiotti M G and Migoni R 1995 Phys. Rev. B 524044
[12] Grinberg I, Cooper V R and Rappe A M 2002 Nature 419909
[13] Shin Y H, Cooper V R, Grinberg I and Rappe A M 2005 Phys. Rev. B 71054104
[14] Sepliarsky M, Stachiotti M G and Migoni R L 2006 Phys. Rev. Lett. 96137603
[15] Shin Y H, Grinberg I, Chen I W and Rappe A M 2007 Nature 449881
[16] Zhong W, Vanderbilt D and Rabe M K 1994 Phys. Rev. Lett. 731861
[17] Marques M I 2005 Phys. Rev. B 71174116
[18] Brown I D and Wu K K 1976 Acta Crystallogr. B 321957
[19] King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 471651
[20] Resta R 1994 Rev. Mod. Phys. 66899
[21] Ghosez P, Cockayne E, Waghmare U V and Rabe K M 1999 Phys. Rev. B 60836

[^0]: ${ }^{3}$ MOLDY is developed by Keith Refson, and it is a free software following the terms of the GNU General Public License.

